

LAGUNITAS CREEK BRIDGE PROJECT PUBLIC MEETING MAY 10, 2017

PUBLIC MEETING AGENDA

- Presentation
 - 1. What is CEQA/NEPA?
 - Project Need/ Existing Conditions
 - 3. Reasonable Range of Alternatives
 - 4. Environmental Evaluation Results
 - 5. Next Steps
- Public comment
- As time allows, return to reviewing information at stations around the room

Please provide your input on the provided comment cards and hand them to the Welcome Desk!

WHAT IS NEPA AND CEQA?

NEPA AND CEQA

- Pursuant to
 - California Environmental Quality Act (CEQA)
 - National Environmental Policy Act (NEPA)
- Caltrans has prepared the Draft EIR/EA
- And including the public input into the environmental review

PROJECT PURPOSE AND NEED

EXISTING CONDITION - BRIDGE

on the west side

BE WORK ZOI

EXISTING CONTEXT AT THE BRIDGE

PROJECT PURPOSE

...is to provide a safe, seismicallystable crossing over Lagunitas Creek on Route 1

PROJECT NEED: THE BRIDGE

- Is a vital connection to the Pt. Reyes community and beyond and this connection must be maintained
- Does not meet current safety and seismic standards
- Is showing signs of incremental wear and deterioration

PROJECT NEED

The bridge is 88 years old & wearing out

- Rusting of steel loss of section
- Deteriorating (spalling) concrete
- Suspected steel fatigue
- No structural redundancy
- 1929 design standards

REVIEW DEFICIENCIES

OTHER IDENTIFIED ISSUES WITH BRIDGE: TRAFFIC, PEDESTRIAN AND BIKE SAFETY

- Missing protective railing
- Narrow culvert prevents pedestrians to walk along shoulder
- Narrow bridge
- Inadequate Safe Route to School
- Difficulty turning from Sir
 Francis Drake Blvd to SR 1

PUBLIC INPUT: KEY MESSAGES

- 1. Construction duration: 2 to 3 seasons is too long.
- 2. Right-of-Way impacts: Minimize project impacts on adjacent property owners and access to/from Pt Reyes Station
- 3. Minimize environmental impacts to wetland and riparian habitats
- 4. Aesthetics: Maintain the current character (color and scale)
- 5. Safety: Pedestrians, bicycles and traffic safety
- 6. Lagunitas Creek: Maintain/ improve water flows and plan for sea level rise

RANGE OF ALTERNATIVES

ALTERNATIVES ANALYSIS PROCESS

- 1. Develop a full range of alternatives
- 2. Gather community input
- 3. Develop criteria
- 4. Gather comparative data on the range of alternatives
- Screen those that are not prudent and/or feasible

PROJECT DESIGN CRITERIA

- Meet current seismic standards
- Provide useful cross section for vehicular, bicycle & pedestrian needs
- 3. Meet current design criteria (live, dead and wind loads)
- 4. Minimize environmental impacts (both community and natural environments)
- 5. Maintain two-way traffic flow especially during weekend periods of high traffic volumes

THE RANGE OF ALTERNATIVES

Full Range of Alternatives:

- No Build Alternative (no action, baseline)
- Build Alternatives
 - Bridge types: steel-truss three-span, full-span steel-truss, precast concrete girder, suspension
 - Construction method: Conventional Construction and Accelerated Bridge Construction
- Retrofit Alternative

COMMON DESIGN ELEMENTS FOR ALL ALTERNATIVES

- Cross walk at Sir Francis Drake'
- Provide continuous shoulder
- Safer turning movements

None of the Alternatives:

Raise bridge to accommodate floodplain

4 ALTERNATIVE BRIDGE TYPES

1. Steel-Truss: 3-span

2. Steel-Truss: Full-span

3. Concrete Bridge: 3-span

4. Suspension Cable

STEEL TRUSS: THREE-SPAN

STEEL TRUSS: THREE-SPAN (CROSS SECTION)

THREE SPAN TRUSS BRIDGE

TWO CANTILEVERED SIDEWALKS

IMPORTANT DIMENSIONS

<u>Source</u>: Americans with Disabilities Act of 1990 (ADA) (28 CFR Part 36 Public Accommodations, U.S. Dept. of Justice Civil Rights Division, Standards for Accessible Design (webpage, 2016)

Horse With Rider

CONVENTIONAL CONSTRUCTION

- Phase 1: Year 1
 - Mobilize team and stage equipment
 - Build temporary two-lane bridge between June Sept
- 2. Phase 2: Year 2
 - Tear out old bridge within June Sept
 - Order materials and prepare pre-cast pieces
- 3. Phase 3: Year 3
 - Build new bridge within June Sept.
 - Remove temporary bridge detour and replace utilities and replanting details

CONVENTIONAL - DETOUR BRIDGE

ACCELERATED BRIDGE CONSTRUCTION (ABC)

- Phase 1: Advanced preparation (Late winter/ Early Spring)
 - Acquire permits, mobilize
 - Develop and gather all pre-cast and pre-assembled components within nearby staging areas
 - Build abutments outside of waterway
- Phase 2: June Sept
 - Install support structures (piers and girders)
 - Close roadway to remove existing bridge and install truss & deck
- Phase 3: Final details (Fall/ Winter)
 - Replace utilities, aesthetic finishes, and replanting, etc.

ABC - LONGITUDINAL MOVE-IN

ABC - LONGITUDINAL MOVE-IN CONSTRUCTION

FOOTPRINT

ABC – DETOUR ROUTE FOR 2-3 WEEKS

- Emergency service personnel on both sides
- Shuttles
- Advanced notification to delivery services
- Postings on social media and web
- Target low tourist season

CONCRETE BRIDGE

CONCRETE BRIDGE

CONCRETE BRIDGE: THREE-SPAN (CROSS

SECTION)

EXISTING BRIDGE

ABC - DETOUR ROUTE FOR 2-3 WEEKS

Same footprint as Steel Truss Bridge with ABC - Longitudinal Move-in

STEEL TRUSS: FULL-SPAN

STEEL TRUSS: FULL-SPAN

FULL-SPAN STEEL TRUSS (CROSS SECTION)

EXISTING BRIDGE 34' Ç 13' 11' 2' EXISTING PIERS

ABC - LONGITUDINAL MOVE-IN

ABC- STEEL TRUSS: FULL-SPAN, TRANSVERSE SLIDE-IN

EXAMPLE ABC – TRANSVERSE SLIDE-IN

EXAMPLE ABC – TRANSVERSE SLIDE-IN

SUSPENSION BRIDGE

CONVENTIONAL CONSTRUCTION

RETROFIT ALTERNATIVE

Original truss scale would remain and piers would enlarge

CONVENTIONAL - DETOUR BRIDGE

REVIEW DEFICIENCIES

RETROFIT/ REHABILITATE ALTERNATIVE

- 1. Build temporary detour bridge
- 2. Build a support structure around the existing bridge
- 3. Divert creek waters (requires use of adjacent properties)
- 4. Remove current worn and cracked concrete deck
- 5. Remove current truss spans
- 6. Drive new piles and build reinforced abutments outside of existing abutments/ piers
- 7. Reassemble and install the refurbished truss spans.
- 8. Pour thicker concrete deck to meet heavier live-load standards.
- 9. Adding standard bridge rails will narrow travel lanes

PUBLIC INPUT: KEY THEMES

- 1. Construction duration: 2 to 3 seasons is too long.
- 2. Right-of-Way impacts: Minimize project impacts on adjacent property owners and access to/from Pt Reyes Station
- 3. Minimize environmental impacts to wetland and riparian habitats
- 4. Aesthetics: Maintain the current character (color and scale)
- 5. Safety: Pedestrians, bicycles and traffic safety
- 6. Lagunitas Creek: Maintain/ improve flows and plan for sea level rise

RESULTED IN SIX ALTERNATIVES

- 1. No Build Alternative
- 2a. Steel Truss, 3-span, ABC, Longitudinal Move-In
- 2b. Steel Truss, 3-span, Conventional (with detour bridge)
- 3a. Concrete bridge, 3-span, ABC, Longitudinal Move-In
- 4a. Steel Truss, Full-span, ABC, Longitudinal Move-In
- 4b. Steel Truss, Full-span, ABC, Transverse slide-in place
 - Only 1 conventional construction alternative (see 2b)
 - Did not carry forward Suspension Bridge or Retrofit Existing bridge, Conventional (detour bridge)

ENVIRONMENTAL ANALYSES, RESULTS AND MEASURES TO ADDRESS IMPACTS

OVERALL CONSTRUCTION IMPACTS

- Staging areas: property impacts, cleared areas, equipment and material storage (approx. 2.5 – 2.8 acres)
- Noise construction activities
- Dust and equipment emissions
- Traffic Interruptions (one-lane in evenings)
- Traffic detours
- Temporary and permanent impacts to sensitive habitat areas
- Socioeconomic impacts during construction

VISUAL AND AIR QUALITY MEASURES

Visual disturbance:

Staging areas can be screened, but free movements to and from staging areas and site cannot be blocked.

Air Quality:

Dust is routinely minimized with watering trucks, keeping equipment clean, having newer equipment which have lower emissions.

NOISE MEASURES

- Noise monitoring
- Plan noisiest activities during day-time hours
- Set back-up warning alarms on low volume
- Noise wall/ blankets (lower noise approx. 15 dBA)
- Temporary relocation would also be considered

TRAFFIC DETOUR MEASURES

- Strategically schedule of closure period for least disturbance
- Advanced notification to truck dispatches
- Influence deliveries to workaround closure period
- Establish routes that do not deliver north-south
- Signalization and flaggers tight-turning intersections

TRAFFIC DETOUR MEASURES

- Provide businesses links to project updates
- Coordinate with Marin Stage
 Coach to adjust service
- Provide emergency services on either side of Lagunitas Creek
- Work with school district to provide shuttles as needed

MINOR PERMANENT IMPACTS CONCERN:

Whitehouse Pool Park
Sensitive Habitats in and
around the bridge

ENVIRONMENTAL CONSIDERATIONS: PARK

Trail/Park Impact: Use of parkland, close trailhead near bridge during construction, limiting canoe access, noise and dust may affect users.

Measures: compensation for use, postings to redirect trail and canoe users, revegetate/planting, enhanced trailhead post-construction.

THREATENED AND ENDANGERED

- California red-legged frog (Rana draytonii)
- Chinook salmon (Oncorhynchus tshawytscha
- Northern spotted owl (Strix occidentalis caurina)
- Steelhead (Oncorhynchus mykiss)
- California freshwater shrimp (Syncaris pacifica)
- Coho salmon (Oncorhynchus kisutch)
- Myrtle's silverspot butterfly (Speyeria zerene myrtleae)
- Tidewater goby (Eucyclogobius newberryi)

PROTECTED HABITATS IN PROJECT AREA

EFFECTS TO SENSITIVE HABITATS

- Direct effects:
 - Potential 'take' of individuals, displacement of animals
 - Vegetation removal
 - Removing bank habitat (soils, vegetation and woody debris)
 - Soil erosion = sediment in the creek
- Indirect Effects:
 - Noise
 - Remove food sources

MEASURES TO ADDRESS IMPACTS ON SENSITIVE HABITATS

- Replanting both on and offsite (Advanced mitigation)
- Stabilizing creek bank and creating standing water habitat with tree snares (roots and logs)
- Onsite biological monitor throughout construction (USFWS, NOAA, CDFG approved biologist)
- Relocating species found
- Limit species entering construction areas with barriers (netting and cofferdams)
- Limit noise to outside of breeding seasons

Lagunitas Creek Bridge Project community MEETING

NEXT STEPS

Environ Doc 2 years Spring 2018

Opportunity for Public Comments

PLEASE REVIEW THE DRAFT EIR/EA AND PROVIDE COMMENTS

- Speakers will be called by the number on their comment card (2 minutes each)
- Otherwise please provide comments by:
 - Filling-in the comment card providing them to sign-in desk, or
 - Mailing (address on the comment card), or
 - Email Comments: lagunitas_bridge@dot.ca.gov
- Download the EIR/EA from project Website: http://www.dot.ca.gov/dist4/lagunitascreekbridge/

THANK YOU FOR LISTENING...

EXTRA SLIDES

HYDRAULICS ANALYSIS: PIERS VS. NO PIERS

- Study reviewed differences between 3-Span bridge type (Steel Truss or Concrete) and the Full-Span Steel Truss.
 - 3-Span bridges would have slightly larger piers in the water and abutments on river banks.
 - Full-span bridge would remove all piers from the water (only abutments on river banks)
- Hydraulics Analysis addressed effects on:
 - Sea Level Rise due to bridge types
 - 100-year flood event
 - Scour of flows on the river bottom.

HYDRAULICS ANALYSIS: PIERS VS. NO PIERS

- No noticeable change on Sea Level Rise due to bridge types
- 100-year flood event
 - Normal High Water elevation is approx. 9 feet, 100 Yr. Flood event is approx. 16 to 20 feet water surface elevation)
 - Piers in the water: Minor rise in flood base elevation (under $\frac{1}{2}$ inch), but no change in FEMA flood boundaries
 - No piers in the water: A drop in flood elevation upstream, same downstream (approx. 1- 5 inches)

Scour analysis

- Piers in the water:
 - Abutments: Deeper scour depth than existing bridge
 - Piers: Slightly less or same scour depth as existing bridge
- No Piers in the water:
 - Abutments: Deeper scour depth than existing bridge